C₁₉H₂₁NO₄.H₂O

-4.5 (3) and 23.9 (3)° for C13-C14-N1-C8-C17-C18-(C).

All non-H atoms except N1, C6, C19 and C20 lie in two planes (Roberts & Sheldrick, 1975) almost parallel to each other $[17(1)^{\circ}]$. The dihedral angle between the least-squares planes through the atoms of rings A and D is 15.1 (1)°, compared with 33° in the case of corydalis B. The C19 methoxyl group is nearly coplanar with the phenyl ring A, while C20 is rotated out of plane D by 88.8 (3)°.

The molecules are aligned in the unit cell with their long axes approximately parallel to the b axis. As can be seen from Fig. 2 and Table 3, the water molecule is involved in four hydrogen bonds, twice as acceptor and twice as donor. There are no hydrogen bonds between the alkaloid molecules. Hence the presence of the water molecule stabilizes the crystal.

SW, BT, JPD and MVM thank the SPPS Belgium for financial support.

References

- BEURSKENS, P. T., BOSMAN, W. P., DOESBURG, H. M., GOULD, R. O., VAN DEN HARK, TH. E. M., PRICK, P. A. J., NOORDIK, J. H., BEURSKENS, G. & PARTHASARATHI, V. (1981). DIRDIF. Tech. Rep. 1981/2. Crystallography Laboratory, Toernooiveld, 6525 ED Nijmegen, The Netherlands.
- CAVA, M. P., NOMURA, K., TALAPATRA, M. J., SCHLESSINGER, R. H., BUCK, K. T., BEAL, J. L., DOUGLAS, B., RAFFAUF, R. F. & WEISBACH, J. A. (1968). J. Org. Chem. 33, 2785–2789.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
- MOTHERWELL, W. D. S. & CLEGG, W. (1978). *PLUTO*. Program for plotting molecular and crystal structures. Univ. of Cambridge, England.
- ROBERTS, P. & SHELDRICK, G. M. (1975). XANADU. Program for crystallographic calculations. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
- SHELDRICK, G. M. (1985). In Crystallographic Computing 3, edited by G. M. SHELDRICK, C. KRUGER & R. GODDARD, pp. 175–189. Oxford Univ. Press.
- WAN, Z. L., QIAO, G. Z., RAO, Z. L. & LIANG, D. C. (1983). Jie Gou Hua Xue (J. Struct. Chem.) 2, 95-100.

Acta Cryst. (1987). C43, 2128–2130

Structure de l'(Ethynyl-1 cyclohexyloxy)-1 [(Méthoxy-2 phényl)-4 pipérazinyl-1]-3 Propanol-2-(RS)

PAR G. MAIRESSE, J. C. BOIVIN ET D. J. THOMAS

Laboratoire de Cristallochimie et Physicochimie du Solide, Ecole Nationale Supérieure de Chimie de Lille, BP 108, 59652 Villeneuve d'Ascq CEDEX, France

ET J. P. BONTE ET D. LESIEUR

Institut de Chimie Pharmaceutique, Rue Laguesse, 59045 Lille CEDEX, France

(Reçu le 18 mars 1987, accepté le 29 mai 1987)

Abstract. $C_{22}H_{32}N_2O_3$, $M_r = 372.5$, monoclinic, $P2_1/c$, $a = 11\cdot11$ (1), $b = 27\cdot28$ (3), $c = 7\cdot49$ (1) Å, $\beta = 109\cdot8$ (1)°, V = 2136 Å³, Z = 4, $D_x = 1\cdot16$ Mg m⁻³, Mo $K\bar{\alpha}$, $\lambda = 0.7107$ Å, $\mu = 0.162$ mm⁻¹, F(000) = 808, T = 298 K, R = 0.040, wR = 0.038 for 2078 independent observed reflexions. Calculated interatomic distances and angles are in the usual range. Both piperazine and cyclohexane rings exhibit a chair conformation. The molecules form zigzag lines parallel to the *b* axis held together by van der Waals forces.

Introduction. La mociprazine est un antiémétique de structure originale synthétisé par l'équipe de chimie du RL-CERM.

0108-2701/87/112128-03\$01.50

Son mécanisme d'action s'explique essentiellement par une diminution de la réactivité de la zone chimio-sensible bulbaire (*trigger zone*) aussi bien à l'égard de l'apomorphine que de doses élevées de sulfate de cuivre.

Ce produit n'appartient pas à la classe des neuroleptiques compte tenu de l'absence d'effet cataleptigène chez le rat même à des doses élevées. Sur le caecum de cobaye, la molécule antagonise l'influx calcique transmembranaire.

Ce produit ne s'apparentant structuralement à aucune des familles de médicaments antiémétiques utilisés en thérapeutique, l'étude de sa structure cristalline a été entreprise dans le but de déterminer ses caractéristiques stériques et sa conformation spatiale.

Partie expérimentale. Monocristaux de forme parallélépipédique $(0.35 \times 0.40 \times 0.05 \text{ mm})$ obtenus par

© 1987 International Union of Crystallography

2128

évaporation d'une solution dans l'éthanol. Diffractomètre Philips 4 cercles PW1100, radiation Mo $K\bar{a}$. monochromateur en graphite, paramètres de maille affinés à partir de 25 réflexions, 3706 réflexions mesurées pour $2 < \theta < 25^{\circ}$ et $0 \le h \le 10, 0 \le k \le 32$, $-8 \le l \le 8$ dont 2078 indépendantes avec $I > 3\sigma I$. 3 réflexions de référence (1,0,13, 120, 110), $(\Delta I/I)_{\rm max} < 0.03$. Pas de corrections d'absorption. corrections de Lp, résolution par méthodes directes. programme MULTAN (Germain, Main & Woolfson 1970), affinement par moindres carrés avec matrice diagonale basé sur les F [version modifiée du programme de Prewitt (1966)]. Hydrogènes déterminés à partir des cartes de Fourier différence, affinement des positions atomiques de tous les atomes, des coefficients d'agitation thermique anisotrope pour tous les non hydrogènes, du facteur d'agitation thermique isotrope de 31 atomes d'hydrogène sur 32 [facteur d'agitation thermique de H2C(24) fixé à 6Å^2 ; facteurs de diffusion de Cromer & Waber (1965), R = 0.040; wR(w =1) = 0,038;* $(\Delta/\sigma)_{max} = 0,01$; pics d'intensités minimales et maximales dans la Fourier différence finale $0.2-0.3 \text{ e} \text{ Å}^{-3}$.

Discussion. La Fig. 1 représente la configuration spatiale de la molécule et la nomenclature des atomes. Les cycles pipérazine et cyclohexane sont tous deux en

* Les listes des facteurs de structure, des facteurs d'agitation thermique anisotrope et des paramètres des atomes d'hydrogène ont été déposées au dépôt d'archives de la British Library Document Supply Centre (Supplementary Publication No. SUP 44105: 17 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Fig. 1. Configuration spatiale de la molécule.

Fig. 2. Empilement spatial des molécules.

Tableau 1. Paramètres atomiques $(\times 10^4)$ et coefficients d'agitation thermique des atomes non hydrogène

$\boldsymbol{B}_{\acute{\boldsymbol{e}}\boldsymbol{q}} = \frac{4}{3} \sum_{i} \sum_{j} \boldsymbol{\beta}_{ij} \boldsymbol{a}_{i} \cdot \boldsymbol{a}_{j}.$					
	x	у	Z	$B_{\epsilon \alpha}(\text{\AA}^2)$	
C(1)	5398 (3)	3072 (1)	9157 (4)	4,4 (1)	
C(2)	5802 (3)	3544 (1)	9076 (4)	4,3 (1)	
C(3)	5291 (3)	3814(1)	7422 (4)	3,6(1)	
C(4)	4371 (3)	3623 (1)	5841 (4)	2,9(1)	
C(5)	3923 (3)	3146(1)	5976 (4)	3,2(1)	
C(6)	4462 (3)	2876 (1)	7616 (4)	4,0(1)	
O(7)	2944 (2)	2979 (1)	4424 (3)	4,0(1)	
C(8)	2132 (3)	2608 (1)	4727 (5)	5,4 (2)	
N(9)	3806 (2)	3887(1)	4139 (3)	2,9(1)	
C(10)	4032 (3)	4417 (1)	4223 (4)	3,6(1)	
C(11)	3157 (3)	4647 (1)	2414 (4)	3,8(1)	
N(12)	3393 (2)	4450(1)	748 (3)	3,2(1)	
C(13)	3218 (3)	3917(1)	709 (4)	3,3(1)	
C(14)	4093 (3)	3690 (1)	2502 (4)	3,1(1)	
C(15)	2538 (3)	4667 (1)	-998 (4)	3,8(1)	
C(16)	2989 (3)	5166 (1)	-1438 (4)	3,3(1)	
O(17)	4083 (2)	5092 (1)	-1971 (3)	4,0 (1)	
C(18)	1943 (3)	5400 (1)	-3052(5)	4,8 (2)	
O(19)	2339 (2)	5883 (1)	-3296 (3)	4,6 (2)	
C(20)	1464 (3)	6166(1)	-4786 (4)	4,0 (1)	
C(21)	199 (3)	6178 (1)	-4549 (4)	4,3(1)	
C(22)	-812 (4)	6187(1)	-4368 (5)	5,8 (2)	
C(23)	2046 (3)	6682(1)	-4548 (6)	5,8 (2)	
C(24)	1327 (4)	7031 (1)	-6121 (6)	7,2 (3)	
C(25)	1182 (4)	6812 (2)	-8057 (7)	9.3 (4)	
C(26)	616 (4)	6304 (2)	-8320 (6)	7,9 (3)	
C(27)	1357 (3)	5961 (1)	-6714 (5)	5,6 (2)	

Tableau 2. Distances interatomiques (Å) et angles intramoléculaires significatifs (°) entre atomes non hvdrogène

C(1) - C(2)	1.372 (4)	C(14) - N(9)	1,469 (4)
C(1) - C(6)	1,374 (4)	C(15) - C(16)	1.525 (4)
C(2) - C(3)	1.387 (4)	C(16) - O(17)	1,416 (4)
C(3) - C(4)	1,378 (4)	C(16) - C(18)	1.506 (4)
C(4) - C(5)	1,409 (4)	C(18) - O(19)	1,421 (4)
C(4) - N(9)	1.413 (3)	O(19) - C(20)	1,433 (3)
C(5) - C(6)	1,383 (4)	C(20) - C(21)	1,475 (5)
C(5)-O(7)	1,373 (3)	C(20) - C(23)	1,534 (4)
O(7) - C(8)	1,424 (4)	C(20) - C(27)	1,515 (5)
N(9)-C(10)	1,465 (4)	C(21) - C(22)	1,176 (6)
C(10) - C(11)	1,511 (4)	C(23)-C(24)	1,515 (5)
C(11)–N(12)	1,462 (4)	C(24)-C(25)	1,526 (7)
N(12)-C(13)	1,466 (4)	C(25)-C(26)	1,507 (7)
N(12)-C(15)	1,457 (3)	C(26)-C(27)	1,527 (5)
C(13)–C(14)	1,500 (4)		
C(1)-C(2)-C(3)	119,8 (5)	C(2)-C(3)-C(4)	121,8 (5)
C(3) - C(4) - C(5)	117,7 (5)	C(4) - C(5) - C(6)	119,9 (5)
C(4) - C(5) - O(7)	116,3 (4)	O(7) - C(5) - C(6)	123,8 (5)
C(5)-C(6)-C(1)	121,1 (5)	C(5)–O(7)–C(8)	117,5 (5)
C(5)-C(4)-N(9)	118,4 (5)	C(3)C(4)N(9)	123,8 (5)
C(4) - N(9) - C(10)	116,5 (4)	C(4)-N(9)-C(14) 114,3 (5)
N(9)-C(10)-C(11)	108,8 (4)	C(10)-C(11)-N(12) 111,5 (4)
C(11)-N(12)-C(13)) 108,7 (4)	N(12)-C(13)-C(14) 110,5 (4)
C(13)-C(14)-N(9)	109,8 (4)	C(14)-N(9)-C(1	0) 108,3 (4)
C(11)-N(12)-C(15)) 111,5 (4)	C(13)N(12)-C(15) 110,1 (4)
N(12)-C(15)-C(16)) 113,3 (4)	C(15)-C(16)-O(17) 108,0 (4)
C(15)-C(16)-C(18)) 109,3 (4)	C(16)C(18)O(19) 107,9 (4)
C(18)-O(19)-C(20) 116,2 (5)	O(19)-C(20)-C(21) 109.9 (4)
C(20)-C(21)-C(22) 180,0 (10)	O(19)-C(20)-C(27) 110,9 (4)
O(19)-C(20)-C(23) 104,8 (4)	C(20)-C(23)-C(23)	24) 113,3 (5)
C(23)-C(24)-C(25) 110,6 (6)	C(24)C(25)C(26) 112,9 (7)
C(25)-C(26)-C(27) 111,8 (7)	C(26) - C(27) - C(27)	20) 111,9 (5)

$C_{22}H_{32}N_2O_3$

conformation chaise avec toutefois une agitation thermique importante des atomes appartenant à ce dernier (Tableau 1). Le Tableau 2 rassemble les distances et les angles les plus significatifs de la molécule. Tous sont en bon accord avec les valeurs habituellement rencontrées. L'organisation est représentée sur la Fig. 2. Elle montre l'existence de chaînes moléculaires en escalier se développant dans la direction de l'axe b. Aucune liaison hydrogène n'a été mise en évidence, la cohésion cristalline étant exclusivement assurée par des interactions de type van der Waals. Nous remercions les laboratoires RL-CERM, Route de Marsat, 63200 Riom, France, qui nous ont fourni l'échantillon de mociprazine nécessaire à cette étude.

Références

- CROMER, D. T. & WABER, J. T. (1965). Acta Cryst. 18, 104–109. GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1970). Acta Cryst. B26, 274–275.
- PREWITT, C. T. (1966). SFLS-5. Fortran IV Full-Matrix Crystallographic Least-Squares Program. Rapport ORNL-TM-305. Oak Ridge National Laboratory, Tennessee, Etats-Unis.

Acta Cryst. (1987). C43, 2130–2132

A Guaianolide Sesquiterpene Lactone

BY WILLIAM H. WATSON* AND IRAJ TAVANAIEPOUR

Department of Chemistry, Texas Christian University, Fort Worth, Texas 76129, USA

and Fang Gao and Tom J. Mabry

Department of Botany, The University of Texas, Austin, Texas 78713, USA

(Received 18 December 1986; accepted 23 June 1987)

Abstract. (5S,6S,7R,8R,2'R,3'R)-8-(2',3'-Epoxyangeloyloxyguaia-1(10),3,11(13)-trien-2-one-6,7-olide. (3aR,4R,9aS,9bS,2'R,3'R)-2,3,3a,4,5,7,9a,9b-Octahydro-6,9-dimethyl-3-methylene-2,7-dioxoazuleno[5,4b]fur-4-yl 2-methyl-2,3-epoxybutenoate. $C_{20}H_{22}O_6$, M_r = 358.40, orthorhombic, $P2_12_12_1$, a = 10.1953 (9), b = 12.531 (1), c = 14.342 (1) Å, V = 1832.2 (2) Å³, Z = 4, $D_x = 1.299 \text{ g cm}^{-3}$, $\lambda(\text{Cu } K\alpha) = 1.54178 \text{ Å}$, μ $= 7.55 \text{ cm}^{-1}$, F(000) = 760, T = 300 K, R = 0.039 for1362 unique reflections. The absolute configuration of the guaianolide sesquiterpene is determined. The cyclopentenone ring exhibits a flattened envelope conformation, the cycloheptene ring a chair conformation while the y-lactone is intermediate between half-chair and envelope.

Introduction. Most members of the important sunflower genus *Helianthus* produce sesquiterpene lactones (for example, see Herz & Kumar, 1981; Gershenzon & Mabry, 1984; Gao, Wang & Mabry, 1986). Recently, guaianolide-type sesquiterpene lactones bearing epoxyangelate side chains were reported from the two closely related species *H. glaucophyllus* and *H. microcephal*ous (Gao, Wang & Mabry, 1987). While the structures of these new compounds could be determined by NMR techniques, the stereochemistry of the epoxyangelate

* To whom all correspondence should be addressed.

0108-2701/87/112130-03\$01.50

side chain could not be established even by nuclear Overhauser enhancement (NOE) experiments. The absolute stereochemistry of one of the new sesquiterpene lactones, (1), is reported herein.

Experimental. A transparent crystal of dimensions $0.35 \times 0.35 \times 0.40$ mm; Nicolet $R3m/\mu$ update of $P2_1$ diffractometer; data collected in the Wyckoff mode (2θ fixed, ω varied) ($4 \le 2\theta \le 120^\circ$), graphite-monochromated Cu K α radiation, lattice parameters from a least-squares refinement of 25 reflections ($42.74 \le 2\theta \le 82.11^\circ$); angles measured by a centering routine; systematic absences (h00, h = 2n+1, 0k0, k = 2n+1, 00l, l = 2n+1) consistent with space group $P2_12_12_1$; Laue symmetry mmm; monitored reflections 104 and 122 showed no variation greater than 3σ ; 1439 independent reflections with Friedel pairs measured ($0 \le h \le 10$, $0 \le k \le 11$, $0 \le l \le 15$); 1362 unique reflections with intensities greater than $2.5\sigma(I)$;

© 1987 International Union of Crystallography